References

1. Laboratory data on file at Bausch & Lomb Incorporated.

The Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens System can revolutionize your practice. It’s the one IOL all your cataract patients will want for exceptional, best-potential post-operative vision quality and contrast sensitivity.

- The SofPort™ AO lens is designed to be aberration-free and thus reduce spherical aberration for better vision quality relative to standard spherical IOLs.
- Optical performance is unaffected by optic decentration or pupil size due to uniform center-to-edge power.
- More predictable and repeatable refractive outcomes with a broader patient population can be expected.

Spherical Aberration (SA) occurs when peripheral rays come to focus at a different point than do paraxial rays.

Standard Spherical IOL
- +SA > 0, Under-corrected
- Standard IOLs have biconvex spherical surfaces that create positive spherical aberration (+SA).

SofPort™ AO Aspheric IOL
- SA = 0, Aberration free
- The SofPort™ AO aspheric optic design is without inherent spherical aberration and is neutral to the cornea’s inherent +SA.

Competitive Aspheric IOL
- -SA < 0, Over-corrected
- A competitive aspheric lens has a modified prolate anterior surface that creates negative spherical aberration (-SA).

Studies conducted at Bausch & Lomb compared the optical performance of three silicone IOLs with a theoretical model of a pseudophakic eye using a commercially available ray-tracing program.

The SofPort™ AO aspheric IOL
- Studies demonstrated at Bausch & Lomb compared the optical performance of three silicone IOLs with a theoretical model of a pseudophakic eye using a commercially available ray-tracing program.
THE FIRST AND ONLY IOL WITH UNIFORM POWER FOR MORE PREDICTABLE REFRACTIVE OUTCOMES

With uniform lens power from center to edge, the Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens is a more "forgiving" optic design that should minimize deterioration of optical performance in the event of lens decenteration.

+ By design, the SofPort™ AO should always outperform a standard IOL even when it's decentered and the standard IOL is not – and it should outperform competitive aspheric lenses in conditions where centration of the IOL is compromised.

+ Unlike competitive lenses, the SofPort™ AO will not induce higher order aberrations (HOA) when decentered, and will induce less HOA than a lens with positive or negative spherical aberration (SA) when it is tilted.

+ Cumulative statistics from a broad range of independent studies* show mean decentration to be .36 mm.** But true lens decentration of an IOL is probably even greater than is reported when measured relative to the visual axis.

*Includes private studies and a broad range of independent studies. Mean decentration = 0.36 mm, standard deviation = 0.25 mm, number of eyes = 1,682.

3-mm pupil with lens decentered 0.5 mm with respect to the visual axis

4-mm pupil with lens decentered 0.5 mm with respect to the visual axis

5-mm pupil with lens decentered 0.5 mm with respect to the visual axis

Modulation Transfer Function (MTF) plots were computed from ray trace simulations of the theoretical eye model. The average of the MTF curves was used as the primary metric for overall optical performance.

1 The optical components of the human eye are rarely aligned with the visual axis. Hence, even a lens perfectly centered in the capsular bag is likely misaligned with the visual axis.

2 Unlike competitive lenses, the SofPort™ AO will not induce higher order aberrations (HOA) when decentered, and will induce less HOA than a lens with positive or negative spherical aberration (SA) when it is tilted.

3 The optical components of the human eye are rarely aligned with the visual axis. Hence, even a lens perfectly centered in the capsular bag is likely misaligned with the visual axis.

4 Cumulative statistics from a broad range of independent studies* show mean decentration to be .36 mm.** But true lens decentration of an IOL is probably even greater than is reported when measured relative to the visual axis.

*Includes private studies and a broad range of independent studies. Mean decentration = 0.36 mm, standard deviation = 0.25 mm, number of eyes = 1,682.

5 Unlike competitive lenses, the SofPort™ AO will not induce higher order aberrations (HOA) when decentered, and will induce less HOA than a lens with positive or negative spherical aberration (SA) when it is tilted.

6 The optical components of the human eye are rarely aligned with the visual axis. Hence, even a lens perfectly centered in the capsular bag is likely misaligned with the visual axis.

7 Unlike competitive lenses, the SofPort™ AO will not induce higher order aberrations (HOA) when decentered, and will induce less HOA than a lens with positive or negative spherical aberration (SA) when it is tilted.

8 The optical components of the human eye are rarely aligned with the visual axis. Hence, even a lens perfectly centered in the capsular bag is likely misaligned with the visual axis.

9 Unlike competitive lenses, the SofPort™ AO will not induce higher order aberrations (HOA) when decentered, and will induce less HOA than a lens with positive or negative spherical aberration (SA) when it is tilted.

10 The optical components of the human eye are rarely aligned with the visual axis. Hence, even a lens perfectly centered in the capsular bag is likely misaligned with the visual axis.
THE FIRST AND ONLY
ASPHERIC IOL FOR ALL THE PEOPLE

The Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens System should ultimately prove to satisfy more patients, even those who have had previous hyperopic LASIK, and eyes that would not be included in the average cornea model.

- Expect more predictable and repeatable refractive outcomes with a broader patient population. Uniform center-to-edge lens power is unaffected by lens decentration and pupil size.
- Patients should experience their best-potential post-operative vision quality with enhanced contrast sensitivity, particularly important in low-light or nighttime conditions.

*Simulated visual results

4-mm pupil, Mesopic Conditions*

5-mm pupil, Scotopic Conditions*

5-mm pupil, Actual Through-lens Image Quality

22D SofPort™ AO aspheric IOL

Actual images through a SofPort™ AO and a standard spherical IOL in aqueous solution.
THE FIRST AND ONLY IOL WITH
TWO ASPHERIC SURFACES FOR OPTIMAL VISUAL OUTCOMES

Unlike competitive aspheric lenses, each aspheric surface of the Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens contributes to consistent optical performance. Newer-generation silicone with proven biocompatibility provides further assurance for best-potential post-operative outcomes.

- Uniform power from center to edge will not introduce higher order aberrations (HOA) if decentered
- By design, asymmetrical biconvex optics with a steeper anterior surface and low refractive index minimize surface-reflected glare and unwanted optical images
- Newer-generation silicone is equivalent to hydrophobic acrylic in visual acuity, patient satisfaction, chronic inflammation, and PCO
- 360° anterior/posterior square-edge optic minimizes cell migration and provides PCO rates equal to acrylic

SofPort™ AO IOL uses a double square-edge lens design that directs reflected light away from the fovea.

SofPort™ AO aspheric lens design
Standard spherical lens design

*Exaggerated view
THE FIRST AND ONLY ASPHERIC IOL WITH PLANAR DELIVERY IMPLANTATION

The Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens System provides the benefits of sterile, single-use lens delivery with proprietary planar delivery.

- The SofPort™ System is designed for direct (planar) delivery of the IOL into the capsular bag, minimizing tissue trauma and related potential complications.
- Risk of cross-contamination is eliminated with the disposable inserter.

The proprietary SofPort™ System allows for easy implementation of a foldable lens into a sub 3.0-mm incision. Planar M-folded delivery eliminates haptic sweep.

The complete Bausch & Lomb SofPort™ Advanced Optics Aspheric Lens System is an integrated insertion system comprised of the SofPort™ AO lens, System inserter, Amvisc® Plus buffered viscoelastic, and the STORZ® LaserEdge® disposable blade.

Start a resolution revolution.
For more information contact your Bausch & Lomb representative at 800-338-2020.